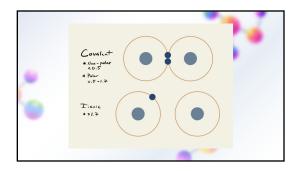

- Describe the structure of the atom
- Explain chemical energy and its relation to electron distribution/charge
- Identify periodic trends





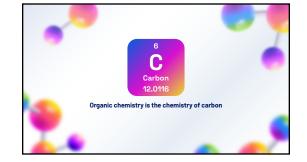


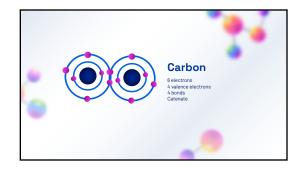


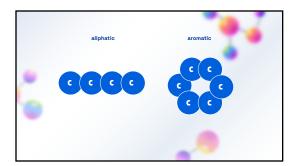


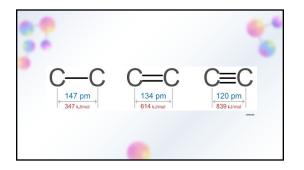


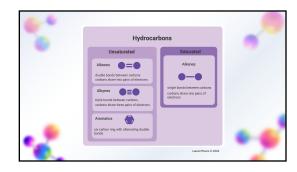

- Define a chemical bond
- Identify different types of chemical bonds
- Make biological connections to chemical bonds



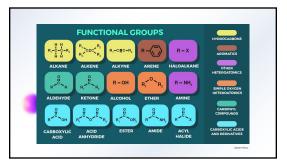


| Table1                                   | Description                        | Molecular traits                                                           | Characteristic                                                |
|------------------------------------------|------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|
| reame                                    |                                    | Non-Polar                                                                  | Characteristic                                                |
| London <sup>2</sup> (1930)<br>dispersion | induced dipole -<br>induced dipole | All compounds,<br>non-polar interaction                                    | Transient polarization, scales with molecular si              |
|                                          |                                    | Polar                                                                      |                                                               |
|                                          | Hydrogen bonding                   | Extreme dipole-dipole<br>interaction: H acceptor<br>interacts with H donor | Significant with<br>compounds containing<br>-OH or -NH groups |
| Keesom <sup>1</sup> (1912)               | dipole-dipole                      | Interaction between<br>strong dipoles                                      | Electronegative groups<br>(e.g., halogens, -OR, -NO,<br>-SO_) |
| Debye <sup>4</sup> (1923)                | Dipole-induced dipole              | Interaction between<br>a strong dipole and a<br>weak dipole                | More polarizable = easie<br>induction                         |

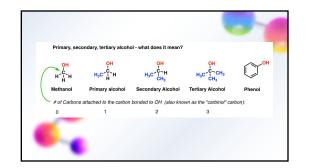


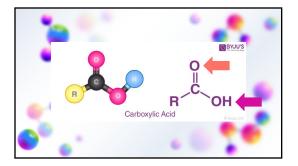



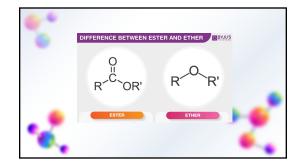


- List the important qualities of carbon
- Distinguish between visual morphology of aliphatic and aromatic molecules
- Explain the difference between single and double bonds
- Identify key functional groups and their chemical properties

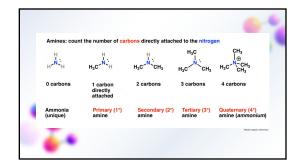


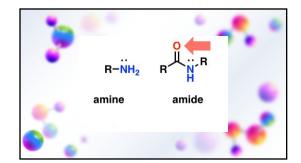


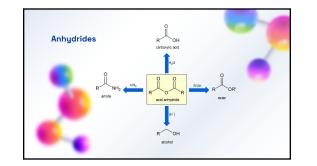



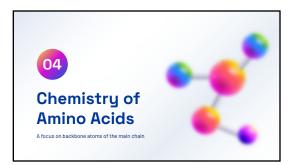



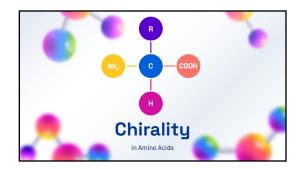



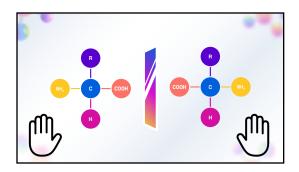





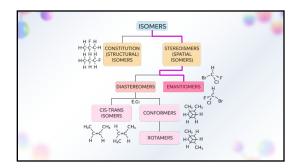


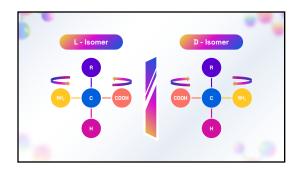


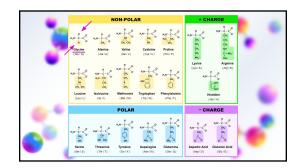


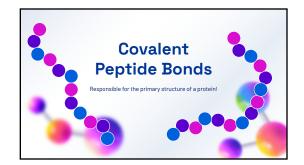



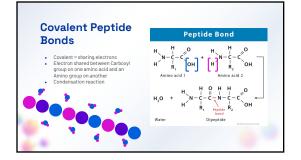


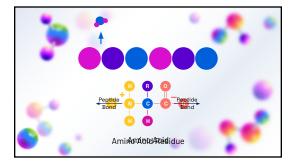


- Identify the different groups that make up the basic backbone of an amino acid
- Understand chirality and what makes amino acids chiral molecules
- Recognize how covalent peptide bonds are formed between amino acids

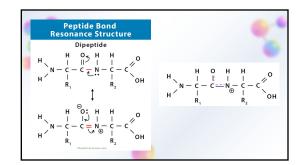


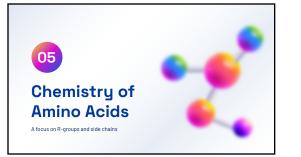



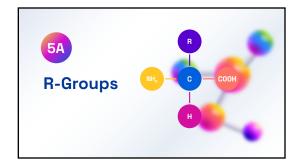



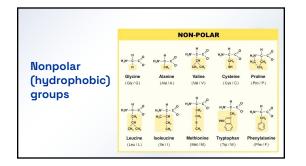



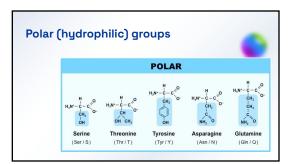



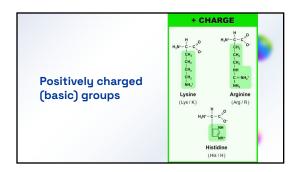


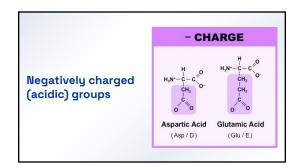



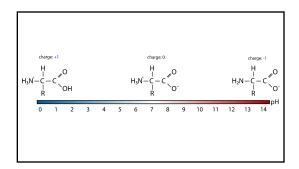


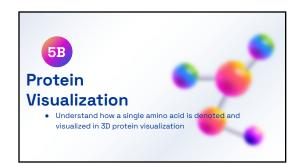





- Understand structure and chemical components of different R-groups that characterize each amino acid.
- Understand special features of the R groups and how they can be modified in different chemical reactions.





|          | NON-POLAR                                                        |                                                             |                                                                                |                                                |                                                                              | + CHARGE                                                         |                                                |
|----------|------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------|
|          | H,N <sup>-</sup> C-C-C-O<br>H<br>Glycine<br>(Gly/G)              | H,R=C=C <sup>0</sup><br>CH,<br>Alanine<br>(Ala (A)          | HUM-C-C-C<br>CH ON<br>CH ON<br>Valine<br>(Val.I.V)                             | H,H-C-C-C<br>CH,<br>SH<br>Cysteine<br>(Cys1/C) | H<br>HAN-C-C-C<br>CH<br>Proline<br>(Pro (P)                                  | H,N°-C-C<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>NH, | H-0-0<br>H-0-0<br>CH,<br>C-H,<br>C-H,<br>M-0-0 |
| R-Groups | H,H-C-C-C<br>CH, CH,<br>CH, CH,<br>CH, CH,<br>CH, CH,<br>CH, CH, | $\begin{array}{c} H_{i}H_{i}H_{i}H_{i}H_{i}H_{i}H_{i}H_{i}$ | H,M-C-C-C<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH | H,N-C-C<br>CH<br>IN<br>Tryptophan<br>(Trp/W)   | Pherylalanine<br>(Phe/F)                                                     | Lysine<br>(Lys./K)<br>History<br>History<br>(Hs./H               |                                                |
|          |                                                                  |                                                             | POLAR                                                                          |                                                |                                                                              | - CHAR                                                           | GE                                             |
|          | H,N=                                                             | HJR-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C-C                   | H,H=0=0<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,  | HAP-C-C                                        | H,H=C=C<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH,<br>CH | Aspartic Acid Glu                                                | tamic Acid                                     |

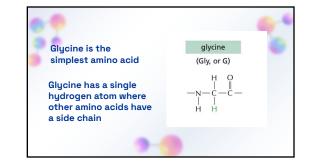


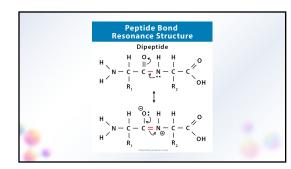


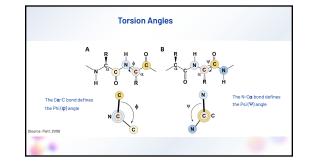


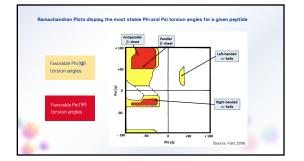


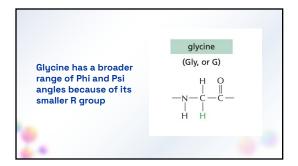


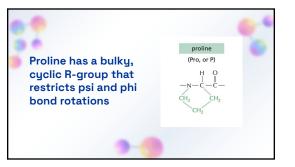



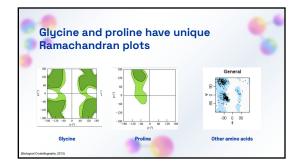


| AEEGFMTAELAGVIRRLWKDSGVQACFNRSREYQLNU<br>241 251 261<br>LSDYDLVLAEDEEMNRMHESMKLFDSICNNKWFTDTS |                                                                                                          | 271<br>KKDLFEI                   | 2.5       | PLT:      |                    | + CHARGE                    | í |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------|-----------|-----------|--------------------|-----------------------------|---|
|                                                                                               | RAN-2-C<br>Chycles<br>(Dy10)<br>RAN-2-C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C | Altable<br>(Altable<br>(Altable) | Nethering |           | North Contractions | Light Argin                 |   |
|                                                                                               |                                                                                                          |                                  | POLAR     |           |                    | - CHARGE                    |   |
|                                                                                               | HUN-C-C <sup>D</sup><br>DH<br>Berine<br>(SH(3)                                                           | Threaders                        | Tyrosine  | Approprie | RAC-C-C            | Appendic Acid Glatamic Acid |   |

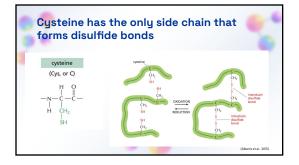


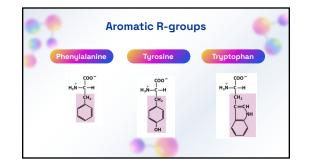





- Identify amino acids with special features
- Understand the these features exert an effect on the structure and biological activity of proteins
- Understand how specific modifications of R-groups can change local chemistry

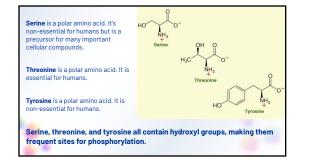


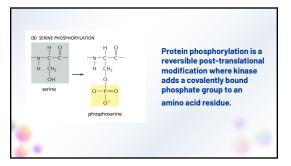



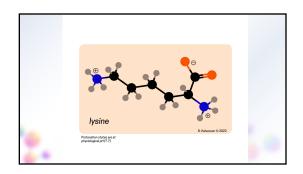



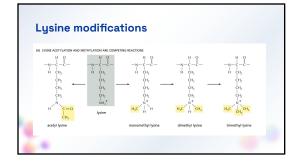



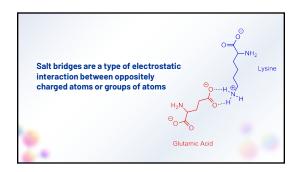


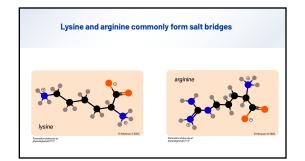



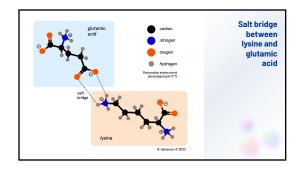














#### References

Aberts, B., Johnson, A., Levis, J., Morgan, D., Relf, M., Roberts, K., & Walter, P. (2015). Proteins. Molecular biology of the cell (6th ed.). Garland Science Careo, F. A. (2020, November). Histocarbon, Britannica. https://www.britannica.com/science/hydrocarbon

Flatt, P.M. (2019) Biochemistry – Defining Life at the Molecular Level. Published by Western Oregon University, Monmouth, OR (CC BY-NC-SA)

Klecker, C., & Nair, L. S. (2017). Chapter 13: Matrix chemistry controlling atem cell behavior. In Biology and engineering of stem cell niches. Academic Press.

https://doi.org/10.1016/B978-0-12-802734-9.00013-5.

Lumen Learning. (n.d.). Chemistry for majora: Atoma first. Lumen Learning. https://courses.lumenlearning.com/chemistrystomafirst/

- Polant, T.D., et al. (2018). Cell Biology E-Book, Elsewier ProQuest Ebook Central. http://ebookcentral.proquest.com/lib/uic/detail.action?doclD=4732254
- The Editors of Encyclopedia Britannica. (n.d.). Esters: Britannica. https://www.britannica.com/science/inster-chemical-compound
- Williams, L.D. (2019). Electrostatic interactions. Molecular Interactions and the Behaviors of Biological Macromolecular. Georgia Tech.

Zhou, H. & Pang, X. (2018). Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 118(1691-1741). https://doi.org/10.10211acs.chemrev.7b00305

#### References

https://cbm.msoe.edu/includes/modules/jmolProteinStructure/primarystructure.html

https://wou.edu/chemistry/files/2020/03/Review-of-Chirality-and-Amino-Acids.pdf

https://tigerweb.towson.edu/jdiscord/www/332\_problem\_sets/advancedtopics/aminoacids.pdf

https://courses.lumenlearning.com/introchem/chapter/types-of-bonds/#~text=Nonmetals%20can%20form%20different%20types.are%2 Oshared%20between%20twc%20nonmetals

https://courses.lumenlearning.com/boundless-chemistry/chapter/intermolecular-forces/#~=text=Key%20Points.negative%20end%20af%20another%20molecule

https://courses.lumeriearning.com/boundless-chemistry/chapter/electron-configuration/#~-text=1%20the%20energy%20ef%20energy%20ef%20energy%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%20the%

https://contrib.pbslearningmedia.org/WGBH/arct15/SimBucket/Simulations/chemthink-atomicstructure/content/index.html

https://chem.it/retexts.org.Bookshelves/Physical\_and\_Theoretical\_Chemistry\_Textbook\_Maps/Supplemental\_Modules\_(Physical\_and\_ Theoretical\_Chemistry)Physical Properties of Matter/Momic\_and\_Molecular\_Properties/Intermolecular\_Forces/Hydrophobic\_Interacti 058

https://chem.ibreteds.org/Courses/Eastern\_Mennonite\_University/EMU%3A\_Chemistry\_for\_the\_Life\_Sciences\_(Cesona)/4%3A\_Coval ent\_Rondrog\_end\_Simole\_Molecular\_Compounds/4/4%3A\_Poliar\_and\_Non-poliar\_Covalent\_Bonds

https://chem.libretexts.org/Bookshelves/Inorganic\_Chemistry/Supplemental\_Modules\_and\_Websites\_(Inorganic\_Chemistry/Descriptive\_ \_Chemistry/Periodic\_Trends\_of\_Elemental\_Properties/Periodic\_Trends

